Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hexakis(2-amino-4-methylpyridine- κN^{1})-dioxidohexa- μ_{4}-sulfido-hexacopper(I)divanadium(V)

Zhang Yu, Guodong Tang, Jianying Zhao and Zhengjing Jiang*

Department of Chemistry, Huaiyin Teachers College, Huai'an 223300, Jiangsu,
People's Republic of China
Correspondence e-mail: yuzhang@hytc.edu.cn
Received 3 June 2008; accepted 23 August 2008
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$; R factor $=0.051 ; w R$ factor $=0.128$; data-to-parameter ratio $=18.9$.

The title compound, $\left[\mathrm{Cu}_{6} \mathrm{~V}_{2} \mathrm{O}_{2} \mathrm{~S}_{6}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{6}\right]$, is constructed from six $\mathrm{CuS}_{3} \mathrm{~N}$ and two VOS_{3} distorted tetrahedra, forming an octanuclear $\mathrm{V} / \mathrm{S} / \mathrm{Cu}$ cluster with C_{i} symmetry. The geometry around the V atoms is slightly distorted tetrahedral, while there are large distortions from ideal tetrahedral geometry for the Cu atoms. Adjacent metal-metal distances range from 2.693 (1) to 2.772 (10) \AA, indicating weak metalmetal interactions in the cluster.

Related literature

The most relevant known analog of the title compound is hexakis (μ_{4}-sulfido)-dioxohexakis(triphenylphosphine) -hexacopper(I)divanadium(V) (Zheng et al., 2001), For related literature, see: Du et al. (1992); Holm (1992); Hou et al. (1996); Liu et al. (1995); Naruta et al. (1994); Zhang et al. (1996, 2001).

Experimental

Crystal data
$\left[\mathrm{Cu}_{6} \mathrm{~V}_{2} \mathrm{O}_{2} \mathrm{~S}_{6}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{6}\right]$
$M_{r}=1356.34$
Hexagonal, $R \overline{3}$
$a=14.139$ (2) A
$c=20.830(4) \AA$
$V=3606.2(10) \AA^{3}$

Data collection

Bruker APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.465, T_{\text {max }}=0.611$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050 \quad 97$ parameters
$w R\left(F^{2}\right)=0.128$
$S=1.02$
1837 reflections
$Z=3$
Mo $K \alpha$ radiation
$\mu=3.28 \mathrm{~mm}^{-1}$
$T=293$ (2) K
$0.3 \times 0.2 \times 0.15 \mathrm{~mm}$

6168 measured reflections 1837 independent reflections 1092 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.054$

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.58 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.69 \mathrm{e}^{-3}$

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

This project was supported by the Natural Science Foundation of Jiangsu Educational Office

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2103).

References

Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Du, S. W., Zhu, N. Y., Chen, P. C. \& Wu, X. T. (1992). Angew. Chem. Int. Ed. Engl. 31, 1085-1089.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Holm, R. H. (1992). Adv. Inorg. Chem. 38, 1-10.
Hou, H. W., Xin, X. Q. \& Shi, S. (1996). Coord. Chem. Rev. 153, 25-56.
Liu, Q. T., Yang, Y., Huang, L. R., Wu, D. X., Kang, B. S., Chen, C. N., Deng, Y. H. \& Lu, J. X. (1995). Inorg. Chem. 34, 1884-1893.

Naruta, Y., Sasayama, M. \& Sasaki, T. (1994). Angew. Chem. Int. Ed. Engl. 33, 1839-1843.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Zhang, C., Jin, G., Chen, J., Xin, X. \& Qian, K. (2001). Coord. Chem. Rev. 213, 51-72.
Zhang, H. H., Yu, X. F., Yang, R. S., Zheng, F. K., Huang, L. Y. \& Zhou, R. P. (1996). Chin. J. Struct. Chem. 15, 353-357.

Zheng, F. K., Guo, G. C., Zhou, G. W., Zhang, X. \& Huang, J. S. (2001). Chin. J. Struct. Chem. 20, 489-493.

supplementary materials

Hexakis(2-amino-4-methylpyridine- $\kappa N^{\mathbf{1}}$)dioxidohexa- μ_{4}-sulfido-hexacopper(I)divanadium(V)

Z. Yu, G. Tang, J. Zhao and Z. Jiang

Comment

In the past two decades, considerable attention has been directed to the study of tetrathiometalate anions $\left[\mathrm{MXS}_{3}\right]^{\mathrm{n}-}(X=\mathrm{O}, \mathrm{S}$; $M=\mathrm{V}, \mathrm{Mo}, \mathrm{W}, \mathrm{Re}$) cluster compounds, since these complexes play a special role in catalysis reactions (Du et al., 1992), biological processes (Holm et al., 1992) and advanced materials (Naruta et al., 1994). These moieties can react as multidentate ligands with a wide variety of metal ions, such as $\mathrm{Cu}, \mathrm{Ag}, \mathrm{Au}, \mathrm{Zn}, \mathrm{Cd}, \mathrm{Hg}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Pd}, \mathrm{Pt}, \mathrm{Sn}$, and Ru to form a wide range of novel structures (Hou et al., 1996). More than 300 heterothiometallic cluster compounds containing these moieties have been synthesized and extensively studied (Zhang et al.,, 2001). However, crystal structures of these clusters containing 2-amino-4-methylpyridine ligands have not been reported until now.

In order to explore the chemistry of $\mathrm{Mo}(\mathrm{W}) / \mathrm{S} / \mathrm{Cu}(\mathrm{Ag})$ clusters extensively, we have synthesized such a cluster by reaction in solution at normal temperatures. The solid-state molecular structure of the octanuclear neutral cluster 1 is shown in Fig. 1. It contains a cluster core $\left[\mathrm{V}_{2} \mathrm{Cu}_{6} \mathrm{~S}_{6} \mathrm{O}_{2}\right]$, of which the $\mathrm{V}_{2} \mathrm{Cu}_{6}$ atoms form a distorted cube, shown in Fig. 2. Each $\mu_{4}-\mathrm{S}$ atom is bonded to three Cu atoms and one V atom constructing each face of the dodecahedron. The geometry around the V atoms is slightly distorted tetrahedral with S-V-S $109.97(5)^{\circ}$ and S-V-O 108.97 (5) ${ }^{\circ}$, and the V-S bonds, 2.2382 (15) \AA, are somewhat longer than those of the free $\left[\mathrm{VS}_{4}\right]^{3-}$ anion as expected [$2.17 \AA$ in the ammonium salt]. The coordination geometry of every Cu atom, bonded to three $\mu_{4}-\mathrm{S}$ atoms and one terminal ligand 2-amino-4-methylpyridine, is strongly distorted from an ideal tetrahedron with $\mathrm{S}-\mathrm{Cu}-\mathrm{N}$ angles varying from $104.52(13)^{\circ}$ to $121.11(14)^{\circ}$. This phenomenon may arise from the steric effect of the bulky 2-amino-4-methylpyridine ligands. The $\mathrm{Cu}-\mathrm{N}$ distance of 2.033 (4) \AA is somewhat longer than the $\mathrm{Cu}-\mathrm{N}$ distance found in $\left[\mathrm{V}_{2} \mathrm{~S}_{4} \mathrm{O}_{3}\left(\mathrm{CuPPh}_{3}\right)_{4}(\mathrm{CuMeCN})_{2}\right]$ complexes (Zhang et al.,, 1996). The $\mathrm{Cu}-\mathrm{S}$ distances between $2.2886(15) \AA$ and $2.4701(16) \AA$ are comparable to those reported in $\left(\mathrm{Et}_{4} \mathrm{~N}\right)_{3}\left[\left(\mathrm{VS}_{4} \mathrm{Cu}_{4}\left(\mathrm{Et}_{2} \mathrm{dtc}\right)(\mathrm{PhS})_{3}\right]\right.$ ($\mathrm{Et}_{2} \mathrm{dtc}=$ diethyldithiocarbamate) complexes (mean $\mathrm{Cu}-\mathrm{S}=2.236$ (5) \AA)(Liuet al., 1995).

In the preparation of the title compound, one S atom of the $\left[\mathrm{VS}_{4}\right]^{3-}$ unit is replaced by an O atom and $\left[\mathrm{VS}_{4}\right]^{3-}$ becomes $\left[\mathrm{VS}_{3} \mathrm{O}\right]^{3-}$. The $\mathrm{V}-\mathrm{O}$ distance 1.618 (6) \AA is a typical double bond distance. The adjacent metal-metal distances range from 2.6932 (11) \AA to 2.7725 (10) \AA, and are slightly shorter than normal $\mathrm{V}-\mathrm{Cu}$ and $\mathrm{Cu}-\mathrm{Cu}$ distances, indicating that there are weak metal-metal interactions. The terminal 2-amino-4-methylpyridine ligand is present in the usual monodentate mode. The C1—N1, C5—N1 and C1—N2 distances of 1.344 (6) $\AA, 1.344$ (7) \AA and 1.350 (7) \AA, respectively, are typical $\mathrm{Csp}{ }^{2}-\mathrm{Nsp}^{2}$ values.

Experimental

To a solution of 2-amino-4-methylpyridine $(0.0230 \mathrm{~g}, 0.1 \mathrm{mmol})$ in dimethylformamide (DMF) (10 ml) were added a solution of $\mathrm{CuI}(0.0741 \mathrm{~g}, 0.2 \mathrm{mmol})$ and $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{VS}_{4}$ suspended in DMF $(5 \mathrm{ml})$. The reaction mixture was stirred at room tem-

supplementary materials

perature for about 8 h . The deep brown solution was filtered and slow diffution of $i-\mathrm{PrOH} / \mathrm{MeCN}$ to the solution, resulted in black prismatic crystals suitable for X-ray analysis.

Refinement

The amino hydrogen atoms were found from Fourier difference maps and fixed with N—H bond lengths of $0.90 \AA$. The H atoms of the aromatic group were geometrically idealized. All the H atoms were refined isotropically with isotropic vibration parameters related to the atoms to which they are bonded with Uiso $\sim=1.2 U \sim$ eq $\sim(U i \operatorname{so} \sim=1.5 U \sim \mathrm{eq} \sim$ for methyl H atoms $)$.

Figures

Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids. All H atoms have been omitted.

Fig. 2. Cubic arrangement of metal atoms.

Hexakis(2-amino-4-methylpyridine-кN ${ }^{1}$)dioxidohexa- μ_{4}-sulfido- \backslash hexacopper(I)divanadium(V)

Crystal data

$\left[\mathrm{Cu}_{6} \mathrm{~V}_{2} \mathrm{O}_{2} \mathrm{~S}_{6}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{6}\right]$
$M_{r}=1356.34$
Hexagonal, $R \overline{3}$
Hall symbol: -R 3
$a=14.139$ (2) \AA
$b=14.139(2) \AA$
$c=20.830(4) \AA$
$\alpha=90^{\circ}$
$\beta=90^{\circ}$
$\gamma=120^{\circ}$
$V=3606.2(10) \AA^{3}$

$$
\begin{aligned}
& Z=3 \\
& F_{000}=2040 \\
& D_{\mathrm{x}}=1.874 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \lambda=0.71073 \AA \\
& \text { Cell parameters from } 6634 \text { reflections } \\
& \theta=1.9-27.5^{\circ} \\
& \mu=3.28 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, black } \\
& 0.3 \times 0.2 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=293(2) \mathrm{K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.465, T_{\text {max }}=0.611$
6168 measured reflections
1837 independent reflections
1092 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.054$
$\theta_{\text {max }}=27.5^{\circ}$
$\theta_{\text {min }}=1.9^{\circ}$
$h=-17 \rightarrow 18$
$k=-12 \rightarrow 18$
$l=-26 \rightarrow 27$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.128$
$S=1.02$
1837 reflections
97 parameters
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0525 P)^{2}\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.58$ e \AA^{-3}
$\Delta \rho_{\min }=-0.69 \mathrm{e} \AA^{-3}$
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Cu1	$0.15031(5)$	$0.98780(5)$	$0.96002(3)$	$0.0233(3)$
V1	0.0000	1.0000	$0.88657(7)$	$0.0207(4)$
S1	$0.14481(11)$	$0.99064(11)$	$1.07850(6)$	$0.0200(4)$
N1	$0.2966(4)$	$1.0004(4)$	$0.9392(2)$	$0.0247(12)$
N 2	$0.2279(4)$	$0.8233(4)$	$0.9034(2)$	$0.0412(14)$

H2A	0.1631	0.8107	0.9120	0.049^{*}
H2B	0.2373	0.7723	0.8878	0.049^{*}
C2	$0.4198(5)$	$0.9427(5)$	$0.9031(3)$	$0.0269(14)$
H2C	0.4295	0.8870	0.8865	0.032^{*}
O1	0.0000	1.0000	$0.8089(3)$	$0.0252(16)$
C1	$0.3149(5)$	$0.9230(5)$	$0.9147(2)$	$0.0227(13)$
C4	$0.4909(5)$	$1.1207(5)$	$0.9417(3)$	$0.0309(15)$
H4A	0.5492	1.1893	0.9518	0.037^{*}
C5	$0.3854(5)$	$1.0969(5)$	$0.9528(3)$	$0.0296(15)$
H5A	0.3749	1.1511	0.9710	0.036^{*}
C3	$0.5092(5)$	$1.0422(5)$	$0.9155(3)$	$0.0255(14)$
C6	$0.6221(5)$	$1.0633(6)$	$0.9020(3)$	$0.0424(18)$
H6A	0.6744	1.1371	0.9134	0.064^{*}
H6B	0.6289	1.0522	0.8571	0.064^{*}
H6C	0.6356	1.0139	0.9267	0.064^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu 1	$0.0191(4)$	$0.0213(4)$	$0.0307(4)$	$0.0111(4)$	$0.0002(3)$	$0.0007(3)$
V 1	$0.0197(6)$	$0.0197(6)$	$0.0226(9)$	$0.0098(3)$	0.000	0.000
S 1	$0.0180(8)$	$0.0194(8)$	$0.0234(7)$	$0.0099(7)$	$-0.0012(6)$	$0.0018(6)$
N 1	$0.027(3)$	$0.030(3)$	$0.020(2)$	$0.016(3)$	$-0.002(2)$	$-0.003(2)$
N 2	$0.026(3)$	$0.030(3)$	$0.063(4)$	$0.011(3)$	$0.012(3)$	$-0.007(3)$
C 2	$0.025(4)$	$0.034(4)$	$0.030(3)$	$0.022(3)$	$0.006(3)$	$-0.002(3)$
O 1	$0.030(2)$	$0.030(2)$	$0.016(3)$	$0.0150(12)$	0.000	0.000
C 1	$0.024(4)$	$0.023(3)$	$0.021(3)$	$0.012(3)$	$-0.002(3)$	$-0.003(3)$
C 4	$0.022(4)$	$0.029(4)$	$0.039(4)$	$0.010(3)$	$-0.003(3)$	$-0.003(3)$
C 5	$0.031(4)$	$0.021(4)$	$0.037(4)$	$0.013(3)$	$0.004(3)$	$-0.004(3)$
C 3	$0.024(4)$	$0.037(4)$	$0.022(3)$	$0.020(3)$	$-0.001(3)$	$0.003(3)$
C 6	$0.029(4)$	$0.066(5)$	$0.040(4)$	$0.030(4)$	$0.006(3)$	$0.006(4)$

Geometric parameters (\AA, ${ }^{\circ}$)

Cu1-N1	2.033 (4)
Cu1-S $1^{\text {i }}$	2.2886 (15)
$\mathrm{Cu} 1-\mathrm{S} 1^{\text {ii }}$	2.3353 (15)
$\mathrm{Cu} 1-\mathrm{S} 1$	2.4701 (16)
Cu1-V1	2.6932 (11)
$\mathrm{Cu}-\mathrm{Cu} 1^{\text {ii }}$	2.7725 (10)
$\mathrm{Cu}-\mathrm{Cu} 1^{\text {i }}$	2.7725 (10)
V1-O1	1.618 (6)
V1-S1 ${ }^{\text {ii }}$	2.2382 (15)
V1-S $1^{\text {iii }}$	2.2382 (15)
V1-S1 ${ }^{\text {i }}$	2.2382 (15)
V1-Cu1 ${ }^{\text {iv }}$	2.6932 (11)
V1-Cu1 ${ }^{\text {V }}$	2.6932 (11)

$\mathrm{N} 1-\mathrm{C} 5$	$1.344(7)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.344(6)$
$\mathrm{N} 2-\mathrm{C} 1$	$1.350(7)$
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	0.8600
$\mathrm{~N} 2-\mathrm{H} 2 \mathrm{~B}$	0.8600
$\mathrm{C} 2-\mathrm{C} 3$	$1.366(8)$
$\mathrm{C} 2-\mathrm{C} 1$	$1.387(7)$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	0.9300
$\mathrm{C} 4-\mathrm{C} 3$	$1.373(8)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.374(7)$
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9300
$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9300
$\mathrm{C} 3-\mathrm{C} 6$	$1.498(7)$

sup-4

supplementary materials

S1-V1iii	2.2382 (15)	C6-H6A	0.9600
$\mathrm{S} 1-\mathrm{Cu} 1^{\text {ii }}$	2.2886 (15)	C6-H6B	0.9600
$\mathrm{S} 1-\mathrm{Cu} 1^{\text {i }}$	2.3353 (15)	C6-H6C	0.9600
N1-Cu1-S1 ${ }^{\text {i }}$	121.11 (14)	S1iii-V1-Cu1	126.41 (7)
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{Si}^{\text {ii }}$	107.71 (14)	S1 ${ }^{\text {i }}$-V1-Cu1	54.36 (4)
$\mathrm{S} 1{ }^{\text {i }}-\mathrm{Cu} 1-\mathrm{S} 1^{\text {ii }}$	104.91 (7)	$\mathrm{Cu1}{ }^{\text {iv }}-\mathrm{V} 1-\mathrm{Cu} 1$	90.91 (4)
N1-Cu1-S1	104.52 (13)	$\mathrm{Cu1}{ }^{\mathrm{V}}-\mathrm{V} 1-\mathrm{Cu} 1$	90.91 (4)
S1 ${ }^{\text {i }}$ - $\mathrm{Cu} 1-\mathrm{S} 1$	109.83 (6)	V1 ${ }^{\text {iii }}-\mathrm{S} 1-\mathrm{Cu} 1^{\text {ii }}$	73.01 (5)
S1i ${ }^{\text {ii }} \mathrm{Cu} 1-\mathrm{S} 1$	108.29 (5)	$\mathrm{V} 1{ }^{\text {iii }}-\mathrm{S} 1-\mathrm{Cu} 1^{\text {i }}$	72.12 (5)
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{V} 1$	132.40 (12)	$\mathrm{Cu1}{ }^{\text {ii }}-\mathrm{S} 1-\mathrm{Cu} 1^{\text {i }}$	112.24 (6)
$\mathrm{S} 1{ }^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{V} 1$	52.63 (4)	V1ii- ${ }^{\text {iii }} 1-\mathrm{Cu} 1$	111.28 (7)
$\mathrm{S} 1{ }^{\mathrm{ii}}-\mathrm{Cu} 1-\mathrm{V} 1$	52.27 (4)	$\mathrm{Cu} 1{ }^{\mathrm{ii}}-\mathrm{S} 1-\mathrm{Cu} 1$	71.15 (4)
$\mathrm{S} 1-\mathrm{Cu} 1-\mathrm{V} 1$	122.30 (5)	$\mathrm{Cu} 1{ }^{\mathrm{i}}-\mathrm{S} 1-\mathrm{Cu} 1$	70.41 (4)
N1-Cu1-Cu1 ${ }^{\text {ii }}$	114.62 (14)	C5-N1-C1	116.4 (5)
$\mathrm{S} 1{ }^{\text {i }}-\mathrm{Cu} 1-\mathrm{Cu} 1^{\text {ii }}$	124.25 (4)	C5-N1-Cu1	115.9 (4)
$\mathrm{S} 1 \mathrm{ii}^{\text {- }} \mathrm{Cu} 1-\mathrm{Cu} 1^{\text {ii }}$	57.07 (4)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cu} 1$	127.6 (4)
$\mathrm{S} 1-\mathrm{Cu} 1-\mathrm{Cu} 1^{\text {ii }}$	51.37 (4)	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	120.0
V1-Cu1-Cu1 ${ }^{\text {ii }}$	90.71 (3)	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	120.0
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{Cu} 1^{\text {i }}$	127.78 (13)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	120.0
$\mathrm{Sl}{ }^{\text {i }}-\mathrm{Cu} 1-\mathrm{Cu1}{ }^{\text {i }}$	57.48 (4)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	121.3 (5)
$\mathrm{S} 1{ }^{\text {ii }}-\mathrm{Cu} 1-\mathrm{Cu} 1^{\text {i }}$	123.48 (4)	C3-C2-H2C	119.4
$\mathrm{S} 1-\mathrm{Cu}-\mathrm{Cu} 1^{\text {i }}$	52.52 (4)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	119.4
V1-Cu1-Cu1 ${ }^{\text {i }}$	90.71 (3)	N1-C1-N2	118.1 (5)
$\mathrm{Cu} 1^{\text {ii }}-\mathrm{Cu} 1-\mathrm{Cu} 1^{\text {i }}$	87.63 (4)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	121.6 (5)
O1-V1-S1 ${ }^{\text {ii }}$	108.97 (5)	$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2$	120.2 (5)
O1-V1-S $1^{\text {iii }}$	108.97 (5)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	119.3 (5)
S1ii ${ }^{\text {ii }}$ V1-S $1^{\text {iii }}$	109.97 (5)	C3-C4-H4A	120.3
$\mathrm{O} 1-\mathrm{V} 1-\mathrm{S1}{ }^{\text {i }}$	108.97 (5)	C5-C4-H4A	120.3
S $1^{\text {ii }}-\mathrm{V} 1-\mathrm{S} 1^{\text {i }}$	109.97 (5)	N1-C5-C4	124.1 (5)
S $1^{\text {iii }}$-V1-S $1^{\text {i }}$	109.97 (5)	N1-C5-H5A	117.9
$\mathrm{O} 1-\mathrm{V} 1-\mathrm{Cu} 1^{\text {iv }}$	124.62 (3)	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	117.9
S1 ${ }^{\text {ii }} \mathrm{V} 1-\mathrm{Cu} 1^{\text {iv }}$	54.36 (4)	C2-C3-C4	117.2 (5)
S1iii-V1-Cu1 ${ }^{\text {iv }}$	55.61 (4)	C2-C3-C6	121.0 (5)
$\mathrm{S} 1{ }^{\text {i }}$ - $\mathrm{V} 1-\mathrm{Cu} 1^{\text {iv }}$	126.41 (7)	C4-C3-C6	121.8 (6)
$\mathrm{O} 1-\mathrm{V} 1-\mathrm{Cu} 1^{\mathrm{V}}$	124.62 (3)	C3-C6-H6A	109.5
$\mathrm{S} 1^{\text {ii }}-\mathrm{V} 1-\mathrm{Cu} 1^{\mathrm{v}}$	126.41 (7)	C3-C6-H6B	109.5
S1 ${ }^{\text {iii }}-\mathrm{V} 1-\mathrm{Cu} 1^{\text {v }}$	54.36 (4)	H6A-C6-H6B	109.5
$\mathrm{S} 1{ }^{\mathrm{i}}-\mathrm{V} 1-\mathrm{Cu} 1^{\mathrm{v}}$	55.61 (4)	C3-C6-H6C	109.5
$\mathrm{Cu} 1^{\text {iv }}-\mathrm{V} 1-\mathrm{Cu1}{ }^{\text {v }}$	90.91 (4)	H6A-C6-H6C	109.5
$\mathrm{O} 1-\mathrm{V} 1-\mathrm{Cu} 1$	124.62 (3)	H6B-C6-H6C	109.5
S1iin-V1-Cu1	55.61 (4)		

supplementary materials

Symmetry codes: (i) $y-1,-x+y,-z+2$; (ii) $x-y+1, x+1,-z+2$; (iii) $-x,-y+2,-z+2$; (iv) $-y+1, x-y+2, z$; (v) $-x+y-1,-x+1, z$.

Fig. 1

Fig. 2

